金识源专高中生物第五章第四节能量之源光与光合作用素材必修1.doc

第5章第4节 1.光合色素及其化学结构 在叶绿体内,类囊体膜上的色素可以分为两类一类具有吸收和传递光能的作用,包括绝大多数的叶绿素a,以及全部的叶绿素b、胡萝卜素和叶黄素;
另一类是少数处于特殊状态的叶绿素a,这种叶绿素a能够捕获光能,并将受光能激发的电子传送给相邻的电子受体。在类囊体膜中,上述色素并非散乱地分布着,而是与各种蛋白质结合成复合物,共同形成称做光系统的大型复合物(图17)。

在叶绿素的分子结构(图18)中有一个卟啉环,卟啉环的中间结合了一个镁原子。卟啉环具有双键和单键交错的网络结构,使叶绿素分子对一定波长内的光具有较强的吸收能力。叶绿素分子还具有一个长的疏水性尾部,有利于叶绿素稳定地分布在类囊体膜中。胡萝卜素是含有11个碳碳双键的化合物,有12种同分异构体,常见的是β-胡萝卜素,叶黄素则是β-胡萝卜素的衍生物。

2.光合色素将能量汇集到反应中心 光系统由捕光系统和光反应中心组成。其中,捕光系统又被形象地称做天线,它由数百个叶绿素等色素分子组成。这些色素分子有序地排列,使捕获的光能能够从一个叶绿素分子传递给另一个叶绿素分子,并最终将能量汇集到光系统的反应中心。反应中心是由蛋白质和一对特殊的叶绿素分子组成的跨膜复合体。在这个复合体中,能量被捕获并用于激发这对特殊的叶绿素分子中的电子。受激发的电子被迅速传递给相邻的电子受体,失去电子的叶绿素分子在相关酶的作用下,获得水中氧元素的电子而恢复到稳定状态,水被氧化成氧气,并释放出H。

3.受激发的电子沿光合链传递,电子传递驱动ATP和NADPH的合成 从反应中心叶绿素分子中激发的电子,沿着类囊体膜中的一系列电子传递体转移,组成光合链。光合链中能量的变化有两次起落,涉及两个光系统。从图19的左方看,光系统Ⅱ(由于历史的原因而被误称为光系统Ⅱ)的色素吸收光能以后,产生一个高能电子,并将高能电子传送到电子传递体Q(质体醌),传递到Q上的高能电子就好像接力赛跑中的接力棒一样,依次传递给细胞色素bf复合物(由细胞色素蛋白和血红素基团组成的复合物)、质体蓝素(一种分子量较小的含铜蛋白质)。电子传递驱动类囊体膜内的质子泵,在类囊体膜的两侧建立了质子梯度。利用建立起的质子梯度,类囊体膜上的ATP合成酶合成了ATP。光系统Ⅱ反应中心的色素失去电子后则由水中氧元素获得电子,水则被分解成氧气和质子。这种由光照引起的电子传递与磷酸化作用相偶联而生成ATP的过程称为光合磷酸化。图19电子传递链 类似于光系统Ⅱ,光系统Ⅰ的色素吸收光能以后,产生一个高能电子,传送到铁氧还蛋白(一种分子量较小的含有铁硫中心的蛋白质),光系统Ⅰ反应中心的叶绿素所失去的电子则由质体蓝素所传递的电子补充,激发的电子最后到达NADP,生成NADPH。至此,光合作用形成了还原力强大的物质NADPH和高能物质ATP,为二氧化碳的固定和还原打下了基础。

4.二氧化碳的固定和还原 二氧化碳的固定和还原是在叶绿体的基质中进行的,主要通过卡尔文循环。由于卡尔文循环的最初产物是3磷酸甘油酸(PGA),是含3个碳原子的化合物,因此又称三碳循环。首先,二氧化碳与1,5-二磷酸核酮糖(RUBP)结合,再加上水,生成2分子的3-磷酸甘油酸。这一反应是由叶绿体基质中的核糖二磷酸羧化氧化酶催化的。在ATP和NADPH的参与下,3-磷酸甘油酸进一步被还原为3-磷酸甘油醛。一部分3-磷酸甘油醛经过一系列生化反应,重新生成1,5-二磷酸核酮糖,维持卡尔文循环,另一部分被运入细胞质(图20),迅速转化为葡萄糖-1-磷酸和果糖-6-磷酸。这两者经过进一步的转化,形成磷酸蔗糖并经过水解而变成蔗糖。叶绿体中的3-磷酸甘油醛主要被转化为淀粉。这些淀粉可以暂时储存在叶绿体的基质中,然后水解成葡萄糖,转运到细胞质中。从图中的循环过程可以看出,每当3个二氧化碳分子进入该循环,就能净生成1个3-磷酸甘油醛分子,同时净消耗9分子ATP和6分子的NADPH。

2